ALGEBRA QUALIFYING EXAM 2

(1) Let p be an odd prime number, and let $\zeta = e^{\frac{2\pi i}{p}} \in \mathbb{C}$ be a primitive pth root of unity. Let $G = \operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ and recall the isomorphism $\chi : G \to (\mathbb{Z}/p\mathbb{Z})^{\times}$ determined by $\sigma(\zeta) = \zeta^{\chi(\sigma)}$ for $\sigma \in G$. For $i \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, let $\sigma_i = \chi^{-1}(i) \in G$.

Let $H \subset G$ be the index two subgroup and let $S \subset (\mathbb{Z}/p\mathbb{Z})^{\times}$ be the set of squares, so that $\chi(H) = S$. Let $N = (\mathbb{Z}/p\mathbb{Z})^{\times} - S$ be the set of non-squares. Let $\alpha \in \mathbb{Q}(\zeta)$ be the element

$$\alpha = \sum_{\sigma \in H} \sigma(\zeta) = \sum_{i \in S} \zeta^i$$

and let $\beta \in \mathbb{Q}(\zeta)$ be the element

$$\beta = \sum_{j \in N} \zeta^j.$$

- (a) Show that $\alpha + \beta = -1$ and that α and β are fixed by *H*.
- (b) Show that, if $\tau \in G H$, then $\tau(\alpha) = \beta$ and $\tau(\beta) = \alpha$. Deduce that $\alpha\beta \in \mathbb{Q}$.
- (c) Show that

$$\alpha\beta = \sum_{j\in N}\sum_{i\in S}\zeta^{i+ij}.$$

- (d) Use the previous formula to compute which rational number $\alpha\beta$ is. (Hint: the answer will depend on whether $-1 \in S$ or $-1 \in N$.)
- (e) Note that $[\mathbb{Q}(\zeta)^H : \mathbb{Q}] = 2$, so $\mathbb{Q}(\zeta)^H = \mathbb{Q}(\sqrt{d})$ for some squarefree d. What is d?
- (2) Let p be a prime number and let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree p. Let F_f be the splitting field of f in \mathbb{C} . Suppose that f(x) has p-2 real roots and 2 non-real roots in \mathbb{C} . Show that the Galois group $\operatorname{Gal}(F_f/\mathbb{Q})$ is S_p .

For the next two questions, let R be a Noetherian commutative ring.

(3) Let M be an R-module and assume that there is an isomorphism

$$\phi: R \to M \otimes_R N$$

for some R-module N.

- (a) Show that M is finitely generated (Hint: write $\phi(1) = \sum_{i=1}^{n} x_i \otimes y_i$ with $x_i \in M$ and $y_i \in N$ and show that x_1, \ldots, x_n generate M as an R-module.)
- (b) Show that $M_{\mathfrak{m}} \cong R_{\mathfrak{m}}$ as $R_{\mathfrak{m}}$ -modules for every maximal ideal $\mathfrak{m} \subset R$.
- (4) Assume that R is an integral domain, and let M be an injective R-module. (a) Show that M is divisible. That is, show that for any $m \in M$ and any
 - (a) Show that M is divisible. That is, show that for any $m \in M$ and any $r \in R$, there is an $m' \in M$ such that m = rm'.
 - (b) Now suppose that M is non-zero and finitely generated. Show that R is a field. (Hint: show that $M_{\mathfrak{m}} = 0$ for all non-zero maximal ideals $\mathfrak{m} \subset R$.)